
1390 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Differential Evolutionary Superpixel Segmentation
Yue-Jiao Gong , Member, IEEE, and Yicong Zhou , Senior Member, IEEE

Abstract— Superpixel segmentation has been of increasing
importance in many computer vision applications recently.
To handle the problem, most state-of-the-art algorithms either
adopt a local color variance model or a local optimization
algorithm. This paper develops a new approach, named differ-
ential evolutionary superpixels, which is able to optimize the
global properties of segmentation by means of a global opti-
mizer. We design a comprehensive objective function aggregating
within-superpixel error, boundary gradient, and a regulariza-
tion term. Minimizing the within-superpixel error enforces the
homogeneity of superpixels. In addition, the introduction of
boundary gradient drives the superpixel boundaries to capture
the natural image boundaries, so as to make each superpixel
overlaps with a single object. The regularizer further encour-
ages producing similarly sized superpixels that are friendly
to human vision. The optimization is then accomplished by a
powerful global optimizer—differential evolution. The algorithm
constantly evolves the superpixels by mimicking the process of
natural evolution, while using a linear complexity to the image
size. Experimental results and comparisons with eleven state-of-
the-art peer algorithms verify the promising performance of our
algorithm.

Index Terms— Superpixel segmentation, differential evolution,
seeding, preprocessing, clustering.

I. INTRODUCTION

SUPERPIXEL segmentation plays a crucial preprocess-
ing role in many image processing and computer

vision applications, such as salient object detection [1]–[3],
image segmentation [4]–[10], video cosegmentation [11],
dense matching [12], object tracking [13], [14], and image
parsing [15], [16]. As illustrated in Fig. 1, the task of super-
pixel segmentation is to over-segment an image into a few
compact regions that are aligned well with natural objects.
Compared with the rigid pixel representation of images,
a superpixel representation contains less redundancy and
greatly reduces the number of image primitives. For example,

Manuscript received February 17, 2017; revised July 31, 2017,
September 11, 2017, and October 11, 2017; accepted November 13, 2017.
Date of publication November 29, 2017; date of current version December 27,
2017. This work was supported in part by the Macau Science and Technology
Development Fund under Grant FDCT/016/2015/A1, in part by the Research
Committee at University of Macau under Grant MYRG2016-00123-FST, and
in part by the National Natural Science Foundation of China under Grant
61502542. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Ling Shao. (Corresponding author:
Yicong Zhou.)

Y.-J. Gong is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
the Department of Computer and Information Science, University of Macau,
Macau 999078, China (e-mail: gongyuejiao@gmail.com).

Y. Zhou is with the Department of Computer and Information Science,
University of Macau, Macau 999078, China (e-mail: yicongzhou@umac.mo).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2778569

Fig. 1. Illustration of superpixel segmentation. Given an input image (top),
the proposed algorithm groups the pixels into a specific number of small
atomic regions (bottom).

for a 481 × 321 image, the number of units to be processed
is 154, 401 by a pixel representation, while this number can
be reduced to hundreds if superpixels are considered instead.
Therefore, as a preprocessing step, superpixel segmentation is
able provide a dimension reduction effect and a substantial
speedup for the subsequent operation. In addition, the pro-
duced superpixels are perceptually meaningful regions that
agree well with human perception.

Since the concept of superpixel segmentation has been
proposed [17], intensive studies have been devoted to this
area, such as the bottom-up, data-driven methods in [18]–[23]
and the top-down, task-driven methods in [24]–[28] (these
algorithms are going to be compared in this paper). Each of
these methods may favor an ad hoc application, but generally
the following three properties are desired for a good superpixel
algorithm.

1) The boundaries of superpixels should capture natural
image boundaries such that each superpixel overlaps
with a single natural object. The satisfaction rate of
this property greatly influences the effectiveness of
subsequent operation and hence acts as the primarily
important goal in superpixel segmentation.

2) Since the superpixel algorithms are used as a pre-
processing step, they are required to possess good time
efficiency. Namely, in designing a superpixel algorithm,
the computational complexity is a critical issue to be
considered.

3) Superpixels with relatively regular shapes and similar
sizes are commonly preferred, in order to make the
resulting superpixels be friendly to human vision or the
feature extraction procedure in applications.

To address these issues, this paper proposes a novel algo-
rithm named Differential Evolutionary Superpixels (DES).
Generally, many existing methods optimize the boundary

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5648-1160
https://orcid.org/0000-0002-4487-6384

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1391

Fig. 2. Illustration of the importance of using global segmentation properties.
(a) Given two objects with identical (or similar) colors, it is very difficult
to segment pixels near the boundary part (e.g., pixel p in the image) to
the correct object (object 2 for p) by minimizing local color variance only.
(b) A real-world case.

adherence of superpixels by minimizing local color variance,
whereas DES optimizes this global property in a more straight-
forward way. The limitation of minimizing local variance only
is illustrated in Fig. 2. When two objects in the image possess
very similar colors, it becomes very difficult to segment them
correctly, especially for the pixels near the boundary parts of
the objects. In DES, we design a Boundary Gradient term to
evaluate the adherence of superpixel boundaries to the high-
gradient components in the image. The optimization of the
boundary gradient term greatly relieves the above problem
since the superpixel boundaries are now enforced to capture
the natural object boundaries. For the purpose of producing
similarly sized superpixels, we further introduce a Regularizer
to measure the global variance of superpixel sizes. The two
global terms, as well as the traditionally used local cost
to enforce superpixel homogeneity (named Within-Superpixel
Error in this paper), are aggregated in the objective function
to optimize.

The optimization task is then accomplished by Differen-
tial Evolution (DE), a powerful stochastic global optimizer
mimicking the nature evolution process [29]–[31]. In DES,
the superpixel segmentations are encoded as individuals in
the population and bred by the genetic operators of DE. New
individuals with better objective values will replace old ones to
realize the “evolution” of segmentations. Meanwhile, the algo-
rithm maintains a kernel point set that interacts with the DE
population in a form of positive feedback to improve the
efficiency. Owing to the low complexity of DE, the proposed
DES satisfies the computational restriction that it produces
promising superpixels with a linear computational complexity
to the image size.

In the experiments undertaken, DES is tested on
the Berkeley segmentation benchmark with 500 images
(BSDS 500) [32] and the PASCAL-S dataset [33]. Com-
pared with eleven state-of-the-art superpixel segmentation
algorithms, DES exhibits better or equally well performance
in terms of standard performance metrics.

The major contributions of this work are summarized as
follows. We accomplish the superpixel segmentation task by
designing a global property model and performing a global
optimizer on the model. First, in the model, we are the first
to design and aggregate three components (within-superpixel
error, boundary gradient, and regularizer) in the objective
function. Optimizing the three components together enhances

the local homogeneity, boundary adherence, and the regularity
of superpixels. Second, considering the optimizer, we make the
first attempt to use DE for superpixel segmentation, which not
only provides accurate optimization results but also possesses
low computational complexity. Third, extensive experiments
and the comparisons with existing algorithms validate that
DES provides a powerful and reliable tool for superpixel seg-
mentation. Note that DES has a preliminary version published
in a conference paper [28]. Later, we will compare the two
versions of DES in detail.

II. RELATED WORK

Generally, there are two categories of algorithms for super-
pixel segmentation: the seeding-based and graph cut-based
methods. In this section, we review representative algorithms
in the two categories. Besides, we present the methodology of
DE at the end of this section.

A. Seeding-Based Superpixel Segmentation

Many algorithms produce superpixels by identifying a num-
ber of seeds (or centers) and then growing superpixels from the
seeds. Therefore, the superpixels are data-driven and formed
in a bottom-up manner.

1) Linear Clustering: Intuitively, the well-known K -means
clustering algorithm can be utilized for superpixel segmenta-
tion to minimize local color variance. However, when clus-
tering the numerous pixels of an image into superpixels,
K -means endures high computational costs in calculating the
distance between pixels and seeds. To solve this problem,
a restricted K -means is widely used, such as in the Simple
Linear Iterative Clustering (SLIC) [18] and the Linear Spectral
Clustering (LSC) [19], [34]. Both SLIC and LSC restrict
the pixel assignment into small windows to obtain linear
complexity i.e., O(N), where N is the image size. Compared
with SLIC, LSC further makes an improvement by using
kernel functions to realize a nomarlized cuts effect. Despite
the K -means clustering, the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm is also
adapted for superpixel segmentation. Shen et al. [20] develop
a two-stage algorithm: in the first stage, the pixels are grouped
into clusters using DBSCAN; and in the second stage, small
clusters are merged into superpixels. The algorithm has O(N)
complexity and it exhibits real-time performance (the fastest
algorithm in our experiment). Achanta and Susstrunk [35]
propose a Simple Non-Iterative Clustering (SNIC) algorithm.
As the name indicated, SNIC is non-iterative and efficient.
In addition, based on SNIC and a polygonal partition method,
the authors design a SNICPOLY algorithm for polygonal
segmentation. Both SNIC and SNICPOLY achieve promising
performance among their peer algorithms.

2) Mode Shifting: Mean Shift (MS) [36] and Quick
Shift (QS) [21] are mode-seeking algorithms that iteratively
shift the seeds towards maximum density areas in the image.
The two algorithms are quite slow, whose computational
complexity are O(N2). Besides, using MS and QS, the number
of produced superpixels cannot be explicitly controlled. For
this type of algorithms, in order to specify the superpixel

1392 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

number, the parameters involved in the algorithms need to be
tuned on the dataset. Shen et al. [22] propose a lazy random
walk (LRW) algorithm. The algorithm initializes superpixel
seeds by LRW, then iteratively shifts the seeds by energy
optimization, and finally refines the seeds by executing LRW
once again. As reported in [22], the computational complexity
of LRW is O(N2). Apart from the superpixel segmentation
in [22], the random walk method is also applied to generate
video supervoxels [37].

3) Morphological Method: Another popular work is the
Turbopixel (TP) method [23], which gradually dilates a set
of regularly distributed seeds using geometric flows. TP poses
strong constraints on the uniformness and compactness of
superpixels. As a result, the algorithm can generate highly
regular superpixels, but, meanwhile, the boundary adherence is
relatively poor, as can be observed in Fig. 3. According to [23],
the computational complexity of TP is O(N). However, in real
execution, the algorithm is much slower than that of the
other O(N) superpixel algorithms such as the SLIC [18] and
LSC [19].

4) Watershed Transform: Due to the over-segmentation
effect, the original Watershed Segmentation (WS) [38] algo-
rithm is available for generating superpixels. The complexity
of WS is O(N log N), but the algorithm cannot explicitly
control the number of generated superpixels. Note that WS
does not belong to the seeding-based superpixel category, but
its variant, the Waterpixel (WP) [39], belongs to. WP first
selects a number of markers and then perform watershed
transformation based on the makers and the image gradient.
The reported complexity is O(N) [39].

B. Graph Cut-Based Superpixel Segmentation

Unlike the seeding-based methods, in this category,
the superpixels are task-driven and produced in a top-down
fashion. Particularly, the image is characterized by a graph of
vertices and edges. Each vertex represents a pixel, while each
edge connecting two vertices denotes the similarity between
the two pixels. The superpixel segmentation is then performed
on the graph to minimize the costs of cuts over the graph.

1) Normalized Cuts: Normalized Cuts (NC) [17], [40], [41]
is the most classical algorithm in this category and is widely
considered as a pioneer of superpixel segmentation. In NC,
the pixel graph is partitioned based on the eigenvectors of the
normalized Laplacian graph matrix, which globally minimizes
the segmentation cost. However, the computational complexity
of NC is O(N1.5), while the reported real execution time is
extraordinary long (a few minutes for a single image according
to [19] and [26]). The large computational overhead limits the
wide applicability of this algorithm.

2) Hierarchical Models: Felzenszwalb and Huttenlocher
[42] propose a highly efficient graph-based over-segmentation
algorithm (GS) by performing agglomerative clustering and
building a minimum spanning tree. GS arrives at a good
boundary adherence performance, but the resulting super-
pixels have irregular shapes and quite different sizes. The
theoretical time complexity of GS is O(N log N). In the
Hierarchical Edge-Weighted Centroidal Voronoi Tessellation
(HEWCVT) [43], multiscale superpixels are produced by a

Fig. 3. Superpixels produced by different state-of-the-art algorithms. From
up to bottom: image, SLIC, LSC, DBSCAN QS, LRW, TP, Lattice, SEEDS,
ERS, EOpt0, EOpt1, and DES.

multilevel segmentation process, from coarse grain to fine
grain. As reported in [43], HEWCVT is O(N) complex.

3) Splitting-Path Finding: Lattice [24] generates superpix-
els by seeking the horizontal and vertical splitting-paths on
the image. The segmentation task is hence formulated as an
optimal path problem and solved by s-t min-cut and dynamic
programming. The algorithm targets at generating quasi-
regular grid, as depicted in Fig. 3. The complexity of Lattice
is O(N1.5 log N). Following this concept, the Superpixels
Extracted via Energy-Driven Sampling (SEEDS) [25], [44]
algorithm finds optimal paths on the images through hill climb-
ing. The algorithm possesses very promising computational

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1393

efficiency, i.e., O(N), in that only pixels near the superpixel
boundaries are considered in the optimization. Nevertheless,
SEEDS poses a strict limitation on the number of superpixels
to be generated, and it also suffers from shape irregularity.
The Entropy Rate Superpixels (ERS) [26] designs a new
objective, namely, the entropy rate of the graph, and optimizes
it together with a balancing term. The objective function
has submodular and monotonic properties, while ERS uses
a greedy algorithm to obtain approximate solutions. ERS is
O(N2 log N) complex. Besides, as can be seen in Fig. 3,
the superpixels produced by ERS are very irregular.

4) Energy Optimization: Veksler et al. [27] formulate the
superpixel segmentation problem in an energy optimization
framework and develop two algorithms (EOpt0 and EOpt1) to
generate compact and constant-intensity superpixels, respec-
tively. The two algorithms provide good shape regularity at
the cost of O(N3/K 2). Peng et al. [45] develop a higher
order energy function that uses the segmentation results of
MS [36] as prior. The algorithm conducts in a two-stage
manner: first, the K -means clustering is applied to generate
initial superpixels; and then, the superpixels are refined by
optimizing the higher order energy function. Involving MS as
a pre-segmentation step, the computational complexity of this
algorithm is O(N2).

C. Background of Differential Evolution

DE was first developed by Storn and Price in 1997 [46]
and undergone intensive studies recently [47]–[49]. The algo-
rithm is a powerful stochastic optimizer specialized in solv-
ing nondeterministic polynomial-time (NP) hard problems.
Given an optimization problem, DE mimics the process of
nature evolution to search the global optimum. The basic
idea is described as follows. The algorithm maintains a
population that consists of P individuals. Each individual is
a D-dimensional parameter vector to represent a candidate
solution to the problem, where D is the dimensionality of
the problem space. The objective function F of the prob-
lem acts as the role of environment to evaluate the fitness
(i.e., quality) of individuals. In each generation of DE,
the genetic reproduction operators such as mutation and
crossover are used to breed new and possibly more competitive
offspring individuals. After evaluating the fitness, the selec-
tion operator updates the population based on a rule named
“Survival of Fitness (SoF)”. Particularly, the individuals pos-
sessing high fitness values survive to the next generation,
whereas the inferior individuals are discarded. This way,
the population is going to have better and better fitness values
with the increase of generation number. Namely, the solutions
are improved during the evolution process. After a number of
generations, the population converges to the global optimum
of the problem. Finally, the algorithm outputs the optimal
solution, which is represented by the individual possessing
the best fitness.

As an evolutionary optimization algorithm, DE has the
following strengths [29]–[31]. 1) Conceptual simplicity: the
idea and procedures of the algorithm follow the natural evo-
lution process, which are easy to understand and implement.

2) Global optimization ability: compared with some local
optimizers, DE can produce globally optimal solutions of
the problems. 3) Flexibility: the operators of DE do not rely
on the objective formulation, so that, with small adaptation,
the algorithm can be utilized to solve various practical
optimization problems. 4) Efficiency: the algorithm is able
to approach optimal or near-optimal solutions with low
computational overhead. 5) Robustness: the algorithm is
persistent under uncertain conditions. In addition, compared
with the other evolutionary optimization methods (such
as the genetic algorithms), DE has distinction on its
mutation scheme, which automatically adapts the step
length to fit the objective landscape. As reported in various
competitions of optimization methods organized by the
evolutionary computation community, DE and its variants
always ranked the first or very front places among all the
evolutionary algorithms. Therefore, DE is recognized as the
most competitive evolutionary algorithm, when considering
its comprehensive performance in the competitions of
global optimization, multimodal optimization, multiobjective
optimization, large-scale optimization, etc [29], [30].

Owing to the above benefits, DE has been widely applied
to solve complex optimization problems in various fields
like economic dispatch [50], network localization [51], and
seismic inversion [52], etc. In the context of image processing
and computer vision, DE has seen applications to image
segmentation [53], [54], classification [55], [56], and human
motion tracking [57]. In this paper, we make the first attempt
to apply the algorithm to superpixel segmentation.

III. DIFFERENTIAL EVOLUTIONARY SUPERPIXELS

This paper develops a novel superpixel segmentation algo-
rithm, the DES, which formulates a global model and then
adopts a global optimizer to solve the model. DES is a
seeding-based algorithm, namely, given an input image I and
the specified superpixel number K , the algorithm targets at
finding an optimal set of K seeds to determine the superpixel
segmention. Fig. 4 depicts the segmentation pipeline of DES,
which is composed of of four major modules:

1) Feature Representation: Represent each pixel of the
image by a feature vector consists of color, spatial, and
contour information (Subsection A).

2) Initialization: According to the image size and the
requested superpixel number, initialize a kernel point
set and P individuals of DE, where P is the population
size (Subsection B).

3) Superpixel Iteration: Aggregate the kernel point set and
the DE individuals to obtain P candidate seed sets, use
nearest-neighbor assignment to obtain the corresponding
superpixel label matrices (Subsection C), evaluate the
quality of the label matrices (Subsection D), and update
the kernel point set (Subsection E) and DE popula-
tion (Subsection F) accordingly.

4) Postprocessing: Enforce the connectivity of superpix-
els (Subsection G).

A. Feature Representation

Each pixel p in the input image is represented by a
six-dimensional feature vector [l, α, β, x, y, δ]T, where l, α,

1394 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Fig. 4. The DES segmentation pipeline is composed of four processing modules: feature representation, system initialization, superpixel iteration, and
postprocessing.

and β stand for light and color components in CIELAB
color space (color feature), x and y denote the pixel coordi-
nates (spatial feature), and δ denotes the pixel gradient (con-
tour feature). Due to the critical time limitation of superpixel
segmentation, only simple and low-level features are used.
Then, without loss of generality, the six components are
linearly normalized into range [0, 1]. For clarity, for the
coordinates x and y, the normalized values are denoted as
μ and ν in the following statement.

B. System Initialization

We need to identify a set of seeds to partition the image
into K superpixels that arrive at the optimal segmentation
performance. As described in Section II-C, DE is a population-
based optimizer that maintains and evolves P individuals.
Each individual i is a parameter vector Xi , which can be
decoded to a candidate solution. For the superpixel segmention
problem, each individual i should be decoded to a candidate
seed set si = [si,1, si,2, · · · , si,K]. Meanwhile, DES maintains
a kernel point set c = [c1, c2, · · · , cK] that interacts with the
individuals. The interaction is bidirectional: on the one hand,
each individual i retrieves the candidate seed set si based
on the combination of its own parameter vector Xi and the
kernel point set c, as will be detailed in the subsection C;
and on the other hand, the kernel point set c is updated
based on the segmentation result of the individual achieving
the best objective evaluation value, as will be detailed in the
subsection E.

The kernel set c consists of K points, each is characterized
by a feature vector [lk, αk , βk, μk, νk, δk]T and the coordinates
(xk, yk) in the image plane (k = 1, 2, · · · , K). In the initializa-
tion, the kernel points are uniformly sampled from the image.
Particularly, the image is partitioned into K uniform squares
of size S × S, where S = √

N/K . The kth initial point is
sampled from the pixel located in the center (xk, yk) of the
kth square. To reduce the risk of sampling a kernel point on
an edge or noisy pixel in the image, (xk, yk) is moved to the
position with the lowest gradient in its 3×3 neighborhood [18].
Then, retrieve the feature vector at (xk, yk) for ck .

The DE population consists of P individuals: X1,
X2, · · · , X P . Each individual is characterized by a
D-dimensional parameter vector:

Xi = [pi,1, pi,2, · · · , pi,D], pi, j ∈ [−S/2, S/2], (1)

where D = 2K . For an integer k ∈ {1, 2, · · · , K }, the pair of
(pi,2k−1, pi,2k) in Xi denotes the differential lengths made to
the coordinates of the kth kernel point along the vertical and
horizontal directions, respectively, in the image plane. By com-
bining the individuals and the kernel points, various candidate
seed sets can be obtained, which will be described later in
the next subsection. Here, in the initialization, the population
of DE is randomly generated, with each pi, j being a random
number in the range.

pi, j = −S/2 + randi, j (0, 1) · S, (2)

where i = 1, 2, · · · , P , j = 1, 2, · · · , D, and randi, j is a
uniformly random number lying between 0 and 1. Note that
the uniformly random initialization is commonly used in the
DE literature, for the purpose of increasing the diversity of
initial population [29]–[31].

C. Seeding and Nearest-Neighbor Assignment

In the seeding procedure, the P individuals are decoded
to P candidate seed sets. Then, the nearest-neighbor (NN)
assignment is performed on each of these candidate seed
sets to obtain P candidate label matrices respectively. The
procedure is described as follows.

Given an individual Xi , we can retrieve a candidate set of
seeds in the following way. For each (pi,2k−1, pi,2k) in Xi ,
a new position in the image plane is obtained by adding the
pair to the coordinates of the kth kernel points (xk, yk):

(x̂i,k , ŷi,k) = (xk + �pi,2k−1�, yk + �pi,2k�), (3)

where i = 1, 2, · · · , P and k = 1, 2, · · · , K . Then,
using each (x̂i,k , ŷi,k) to retrieve a feature vector ĉi,k =
[l̂i,k , α̂i,k , β̂i,k , μ̂i,k , ν̂i,k , δ̂i,k]T, the kth candidate seed of indi-
vidual i is calculated as

si,k = (1 − q) · ci ⊕ q · ĉi,k , (4)

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1395

where “⊕” is component-wise addition, q = 0.1 is a constant
denoting the modification rate of kernel points.

After obtaining si = [si,1, si,2, · · · , si,K], we can derive
a superpixel label matrix Li through the NN assignment of
pixels. Namely, each pixel of the image is assigned with the
index of its nearest seed in si . The distance measure used in
the proposed algorithm is defined as follows. Given two points
a = [la, αa, βa, μa, νa, δa]T and b = [lb, αb, βb, μb, νb, δb]T

in the feature space, the distance between the two points is

d(a, b) =
√

d2
c (a, b) + ws · d2

s (a, b) + wg · d2
g (a, b), (5)

where dc, ds, and dg are the color, spatial, and contour distance
components calculated as

dc(a, b) =
√

(la − lb)2 + (αa − αb)2 + (βa − βb)2,

ds(a, b) =
√

(μa − μb)2 + (νa − νb)2,

dg(a, b) =
√

(δa − δb)2 (6)

In Eq. (5), the coefficients ws and wg determine the relative
importance of the three distance, which are empirically set to
0.005 and 0.3, respectively.

Following [18], in the assignment step, we associate each
seed with a limited window, i.e., only pixels located in the
small window can be assigned to the seed. This restriction
significantly reduces the computational overhead for distance
calculations and also facilitates producing compact superpix-
els. The window length is set to 3S, where S is the grid length
of the uniform partition of image.

To summarize, for each individual i in DES, Xi is the
genotype, while the corresponding seed set si and label
matrix Li represent the phenotype. The objective evaluation
is performed on phenotype to calculate the superpixel seg-
mentation costs (Subsection D). Based on the costs, the evo-
lution operators, including mutation, crossover, and selection,
are performed on the genotype to seek the best solution
(Subsection F).

D. Objective Evaluation

Given a seed set si and the label matrix Li , the objective
function to be optimized is defined as

F(si , Li) = fwse(si , Li) + λ · (−1) · fbg(Li) + γ · fr(Li),

(7)

where fwse, fbg, and fr stand for the within-superpixel error,
boundary gradient, and regularization terms, respectively.
Since we want to minimize fwse and fr while maximizing
fbg, fbg is prefixed with a negative sign in the aggregation.
Parameters λ and γ control the relative influence of the three
terms, which are fixed to constant values. In the experiments
of this paper, we empirically use λ = 8 and γ = 2.

1) Within-Superpixel Error: The within-superpixel error is
defined as the mean squared error (MSE) of assigning each
pixel to its nearest seed:

fwse(si , Li) = 1

N

N∑

j=1

[
d2(p j , si,l)

∣∣∣l = Li (j)
]
, (8)

where p j is the feature vector of the j th pixel, l = Li (j) is
the pixel label, si,l is the feature of seed, and d is the distance
measure defined in Eq. (5). This term evaluates the local color
homogeneity within superpixels.

2) Boundary Gradient: Improving the boundary adher-
ence is a primary goal of superpixel segmentation. However,
we could not know the natural image boundaries in prior,
so that the boundary gradient is used instead, since it provides
a signal of the boundary strength.

First, based on the label matrix Li , we calculate the
boundary map of superpixels in the following way. For each
position in Li , there are eight neighbors located in its 3 × 3
neighborhood. If some neighboring labels are different from
the label of the current position, this position belongs to the
superpixel boundaries. The operation can be implemented as
follows. Given Li , first, we shift the matrix one unit along
all eight directions to generate eight neighboring matrices:
L(1)

i , L(2)
i , · · · , L(8)

i . Then, the truth value of whether the j th
position in Li belongs to the superpixel boundaries can be
calculated as

BLi (j) = I

(
8∑

n=1

I

(
Li (j) �= L(n)

i (j)
)

> 1

)
, (9)

where I is a truth indicator function. In this way, we obtain
the superpixel boundary map of individual i .

As stated in Subsection A, before starting the algorithm,
the gradient δ of each pixel is calculated and normalized. Here,
the gradient map of the entire image I is denoted as �I .
Then, the boundary gradient term in the objective function is
fomulated as

fbg(Li) =
∑N

j=1 �I (j) · BLi (j)
∑N

j=1 BLi (j)
(10)

Therefore, fbg is the average gradient value of superpixel
boundaries, which indicates the strength of boundary adher-
ence of individual i . Note that we use the average but rather
than the summarization of boundary gradient to avoid the
algorithm to favor long boundaries.

3) Regularizer: Since we partition the image with N pixels
into K superpixels, the expected number of pixels assigned
to each superpixel is cm = N/K . The regularizer punishes
segmenting superpixels with sizes far away from cm, which is
defined as

fr(Li) = 1

K
·
∑K

k=1(cLi ,k − cm)2

c2
m

(11)

where cLi = [cLi ,1, cLi ,2, · · · , cLi ,K] denotes the number of
pixels assigned to each seed, K and c2

m are divided for the
purpose of normalization.

E. Kernel Update

After evaluating P individuals, we can find the best-so-far
individual in the population that has the best evaluation score.
The evaluation score is named “fitness” in the context of DE.
For minimization problems, a lower cost score corresponds
to a better fitness of the individual to the environment. Using
bs f to denote the index of the best-so-far individual, the kernel

1396 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Fig. 5. The positive feedback loop in DES.

points [lk, αk , βk, μk, νk , δk]T (k = 1, 2, · · · , K) are updated
based on the label matrix of bs f , Lbs f . Particularly, for each
k ∈ {1, 2, · · · , K }, retrieve all the pixels that are labelled with
k in Lbs f , then set the kernel point to the mean feature vector
of these pixels.

Introducing the kernel point set has two advantages. First,
the optimal superpixel seeds are somewhat, though not exactly,
associated with the centering values of the current segmen-
tation [18]. However, the raw DE component explores the
problem space without using this prior knowledge. Thus,
we introduce the kernel point set to make use of the mean
feature vectors of a partition. It can be considered as a kind of
“heuristic information”, which provides additional knowledge
to assist the algorithm in searching the optimal superpixel
seeds. Second, note that DE is a population-based search
algorithm that can produce various candidate partitions during
the search, but only the partition of the best-so-far individual is
adopted to update the kernel points. The mechanism exploits
the strengths of the historically best information, which is an
elitism strategy. To summarize, the proposed algorithm forms
a circle of positive feedback shown in Fig. 5: on the one
hand, the kernel points are adopted as heuristic information to
improve the phenotype of individuals, and, on the other hand,
the improved phenotype Lbs f is used to update the kernels.
The positive feedback loop constantly improves the best label
matrix during the iterations. In the next subsection, we are
going to describe another component that plays an important
role in the positive loop, the operations of DE.

F. Differential Evolution

In DES, each individual Xi is encoded by a vector rep-
resenting the differential lengths made to the coordinates of
kernel points, by which we can derive a candidate seed set.
In the initialization, the P individuals are randomly generated
in the search space, with fitness evaluated according to Eq. (7).
Then, at each iteration step (named “generation” in the context
of DE), as illustrated in Fig. 6, three genetic operators, namely,
the mutation, crossover, and selection, are performed one by
one to update the individuals.

1) Mutation: In evolutionary biology, “mutation” stands
for a random and sudden perturbation on the genotype of
individuals, which hereafter alters the product of the genes.
Following this concept, in the mutation of DES, for each
individual i , a mutant vector Vi = [vi,1, vi,2, · · · , vi,D] is
created as :

vi, j = pbs f, j + 0.5 · (pr1, j − pr2, j), r1 �= r2 �= bs f, (12)

where Xbs f = [pbs f,1, pbs f,2, · · · , pbs f,D] is the best fitted
individual, r1 and r2 are two randomly generated indices,

Fig. 6. The flowchart of DE.

the coefficient 0.5 is a scalar factor, i = 1, 2, · · · , P , and
j = 1, 2, · · · , D. Note that the three individuals joining the
mutation are kept distinct.

Eq. (12) is a typical mutation form in DE, which is named
“DE/best/1” [31]. There are two requirements for the mutant
vector: diversity and possibly good quality. To this end,
random perturbation is performed on the parameter vector of
the best fitted individual. It can be observed from Eq. (12)
that the perturbation of individuals is derived from scaled
population difference, which has the following benefits. In the
initial stage, since the population is randomly distributed,
the perturbation length is long, which helps the algorithm
to explore the problem space. After a few generations, with
the convergence of the population, the perturbation length
decreases to a very small value, which helps local exploitation.
Therefore, the mechanism balances the global exploration and
local exploitation of the algorithm. In addition, if the fitness
landscape is compact on one dimension and diverse on another,
the population difference on the former dimension will become
smaller than that of the latter. This mechanism brings an
automatic contour matching effect in the fitness landscape.
To conclude, rather than setting a step size manually, DE
adapts the step size automatically during the optimization
process.

2) Crossover: Crossover is used to combine the current
individual and the mutant vector so as to reproduce an off-
spring named trial vector. In DES, the binomial crossover [31]
is used, by which Xi = [pi,1, pi,2, · · · , pi,D] randomly
exchanges some components from the mutant vector Vi

with 90% probability. Denote the trial vector as Ui =
[ui,1, ui,2, · · · , ui,D], it is calculated as

ui, j =
{

vi, j , if randi, j (0, 1) < 0.9 or j = jrnd

pi, j , otherwise
(13)

where randi, j (0, 1) is a uniform random number generator and
jrnd is a random dimension index to keep the trial vector has
at least one dimension different from the individual Xi . In this
way, the offspring inherits the genotypes of both the current
individual and the mutant vector, which has good diversity and
may lead to promising phenotype and competitive objective
evaluation score.

3) Selection: Selection is performed to keep good genotype
of the problem while discarding the inferior ones to the next
generation. In this step, first, the fitness of the trial vector
generated in Eq. (13) is evaluated according to the procedures
presented in Subsections C and D. Then, the individual Xi is
updated as

Xi =
{

Ui , if f i tness(Ui) is_better_than f i tness(Xi)

Xi , otherwise

(14)

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1397

Fig. 7. Illustration of the postprocessing step.

where f i tness is calculated according to the objective func-
tion we want to minimize. The population will preserve either
the individual or the trial vector according to which one is
more fitted to the environment. The number of individuals
in the population is hence kept as a constant. In this way,
the population evolves with respect to the minimization of
objective, and it never deteriorates.

Note that the convergence and stability analysis of DE are
reported in the literature [58]. The above operators iterate
for T generations in order to output a satisfactory solution.
The setting of T balances the segmentation performance and
computational overhead of DES. We found that T = 10 is
enough for producing promising superpixel segmentation, and,
at the same time, the required processing time is relatively
short. Meanwhile, we use a population size P = 5.

G. Postprocessing

At the end of optimization, the best-so-far label matrix,
Lbs f , is outputted as the superpixel segmentation results.
However, in the above procedures, we do not explicitly enforce
the connectivity of superpixels. Therefore, there may possibly
exist some “orphaned” pixels that are assigned with labels
different from the surrounding pixels. Following the other
algorithms [18], [42], we perform a postprocessing step named
“enforce connectivity” on the label matrix to correct the lables
of isolated pixels and obtain the final segmentation results.
As illustrated in Fig. 7, the isolated pixels are merged into
their surrounding superpixels in the postprocessing step.

H. Complexity Analysis

The pseudo code of DES is presented Algorithm 1. Given
an image of size N , the complexity of feature extraction and
initial seeding is O(N). By restricting the covering range of
seeds in a limited window, the complexity of label assignment
is reduced to O(N), as reported in [18]. The cost in calculating
the objective value (i.e., the fitness of individuals in DE),
as well as the kernel update, is O(N). The DE operation
has a linear complexity to the number of seeds and it is thus
O(K) complex. The seeding process iterates for a constant
number of times, which is independent with N and K . Finally,
the postprocessing procedure costs O(N) time according to
[18] and [19]. This way, DES is O(N + K) complex. Since
K � N , the O(K) term can be omitted. To conclude,
the proposed DES algorithm has a linear complexity O(N)
to the image size.

Algorithm 1 DES

I. Discussion

Compared with the algorithms reviewed in Section II,
the proposed DES algorithm has the following characteristics/
advantages:

1) The previous seeding-based algorithms perform super-
pixel segmentation by minimizing local color variance,
which encounter difficulties in segmenting multiple
objects with similar color features (see discussion
in Fig. 2). In comparison, DES embeds and optimizes the
global segmentation properties in the objective function
straightforwardly, which is able to improve the boundary
adherence of superpixels.

2) The information propagation between the kernel points
and the DE population forms a positive feedback loop
that enhances the quality of these two components inter-
changeably. DES is capable of self-adaptively searching
in the fitness landscape without external guidance and
finding the global optimum.

3) The existing global optimization-based algorithms
endure high computational cost and long execution
time [17], [27], [40], [41], which are not suitable for pre-
processing the images in some time-critical applications.
In contrast, although adopting a global optimization

1398 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

model, the computational cost of DES is linear to the
image size.

4) Different from some algorithms that produce irregular
superpixels [21], [25], [26], [42], in the design of DES,
we also pay attention to the regularity issue.

The initial results of the work have been accepted to
publish in a conference paper [28] (ICME’16). In this journal
extension, not only new experimental results and analysis
are presented, but also the algorithm design is improved.
To facilitate the comparisons between the two versions of
DES, the preliminary version of DES in ICME’16 is denoted
as “DESp”. Generally, DES and DESp both apply DE to
tackle the superpixel segmentation in a global optimization
way, and their frameworks are similar. Therefore, DES and
DESp have shared properties such as bottom-up segmentation
manner, explicit control of superpixel number, regularity of
superpixels, and linear complexity to the image size N . The
major difference between DES and DESp lies in the individual
representation of DE. In DESp, each individual represents
the coordinates of superpixel seeds directly. In comparison,
we now use the individuals to represent the differential
parameter vectors made to the kernel points and then to
obtain the superpixel seeds. The kernel points are the mean
feature vectors of superpixels represented by the best-so-far
individual. Basically, this new mechanism has two advantages
as described in Subsection E. First, the use of mean feature
vectors can be considered as a kind of “heuristic information,”
which provides additional knowledge for algorithm to search
in the problem space. Second, note that the partition by the
best-so-far individual is utilized. It is an elitism strategy to
exploit the strengths of the historical search information so
as to improve the performance of DE. Besides, DESp utilizes
only color and spatial features, and DES further incorporated
the contour feature in the feature representation vector. The
reason of this improvement is intuitive: for some images
that endure low color contrast, the color and spatial features
may not be sufficient to provide a good discriminability for
the pixels. Thus, DES further exploits the contour feature to
relieve this problem.

IV. EXPERIMENTS AND COMPARISONS

Experiments are carried on the Berkeley Segmentation Data
Set (BSDS 500) [32] and the PASCAL-S dataset [33]. BSDS is
the most commonly used dataset to examine the performance
of superpixel segmentation algorithms. As an improved ver-
sion of BSDS 300, the BSDS 500 contains 500 natural images.
In addition, the PASCAL-S dataset contains 850 images of
various object classes and sizes. Both datasets are assigned
with human-annotated ground-truth labels.

The proposed DES algorithm is compared with eleven
state-of-the-art segmentation algorithms: SLIC [18], LSC [19],
DBSCAN [20], QS [21], LRW [22], TP [23], Lattice [24],
SEEDS [25], ERS [26], EOpt0, and EOpt1 [27]. Table I
summarizes the characteristics of the algorithms, including the
segmentation manner, control of superpixel number, regularity
of superpixels, and computational complexity. Although these
algorithms are based on different concepts, they are all unsu-
pervised methods that input a single image and output the

TABLE I

CHARACTERISTICS OF THE SUPERPIXEL SEGMENTATION
ALGORITHMS PERFORMED IN THE EXPERIMENTS

label matrix of superpixels for the image. In addition, from
the original references of these algorithms, it can be seen that
the algorithms are evaluated using the same criteria, namely,
undersegmentation error, boundary recall, etc. Therefore, it is
reasonable to make comparison of these algorithms. All the
algorithms are implemented based on the codes provided by
the authors and executed on the same platform. Note that a
single CPU is used throughout the execution.

A. Performance Metrics

To evaluate the quality of superpixels produced by dif-
ferent algorithms, standard performance metrics are used,
namely, the Undersegmentation Error (UE) [18], Boundary
Recall (BR) [18], and Achievable Segmentation Accu-
racy (ASA) [26]. The three metrics are formulated as follows.
Let SP = {sp1, sp2, · · · , spK } denote the superpixel set,
GT = {gt1, g2, · · · , gtNg } denote the ground-truth segmen-
tations, where Ng stands for the number of ground-truth
segmentations. Then, |spi | and |gt j | represent the sizes of
superpixels and segmentations, which satisfy

∑K
i=1 |spi | =∑Ng

j=1 |gt j | = N .

Undersegmentation Error (UE) measures the area of super-
pixels that slops over the ground-truth segmentation borders.

U EGT (SP) = 1

N

⎡
⎣

K∑

i=1

Ng∑

j=1

|spi | · H (spi, gt j) − N

⎤
⎦ ,

H (spi, gt j) =
{

1, if |spi ∩ gt j | > 5% · |spi |
0, otherwise

(15)

For each pair of superpixel spi and ground-truth segmentation
gt j , if the number of intersecting points of spi and gt j

exceeds five percent of |spi |, the two elements are considered
as overlapped. If a superpixel overlaps with more than one
ground-truth segmentations, UE increases.

Boundary Recall (BR) measures the proportion of grand-
truth boundaries that is recalled by the superpixel bound-
aries. Define BSP and BGT as the boundaries of SP

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1399

TABLE II

PERFORMANCE METRICS OBTAINED BY DIFFERENT ALGORITHMS ON THE BSDS 500 (K = 400)

and GT , respectively. BR is calculated as

B RGT (SP) = 1

|BGT |
∑

p∈BGT

I(min
q∈BSP

||p, q|| <), (16)

where I is an indicator function shows whether the nearest
neighbor q in BSP is within the 	-distance of pixel p in BGT .
Commonly, 	 is set to 2.

Achievable Segmentation Accuracy (ASA) provides the
accuracy upperbound when using superpixels as basic units
for image segmentation.

AS AGT (SP) = 1

N

K∑

i=1

[
max

j∈{1,··· ,Ng } |spi ∩ gt j |
]
. (17)

Assigning each superpixel with the label of the ground-truth
segment to which the overlap area is the largest, the proportion
of correctly identified labels is the ASA.

Besides, the time efficiency plays an important role in
examining the superpixel segmentation algorithms. We record
and compare the average execution time of different algorithms
for processing a single image in the experiments.

B. Comparisons of Superpixel Results

1) Results on BSDS 500: Tested on the BSDS 500,
the quantitative results obtained by the algorithms for segment-
ing 100-600 superpixels are compared in Fig. 8. Specifically,
Table II presents the numerical results when K = 400,
where the results of the GRID [59] algorithm that uniformly
segments the image is also presented as a baseline. First,
considering the results of GRID, it can be noticed from
Table II that the algorithm achieves a good ASA value: 0.9185.
On the one hand, this result verifies the applicability of using
superpixel segmentation as a preprocessing step for image
segmentation, because even using such a naive method, the
segmentation results will not decrease too much. On the other
hand, the result indicates that the discriminability of the ASA
metric for evaluating superpixel quality is not as good as those
of UE and BR.

Generally speaking, as can be observed from Fig. 8 and
Table II, three algorithms performs very well on the test suite,
namely, DES, LSC, and ERS. DES outperforms the others
in terms of all the performance metrics. Meanwhile, since
DES has linear complexity, the execution is fast. Besides,
as illustrated in Fig. 1 and Fig. 3, DES produces relatively
regular superpixels. Therefore, to summarize, DES satisfies
the common criteria of superpixel segmentation.

Considering the compared algorithms, SLIC is very fast,
and its generated superpixels are very regular. The algorithm

Fig. 8. Performance comparison curves of different superpixel algo-
rithms on the BSDS 500. (a) Undersegmentation error. (b) Boundary recall.
(c) Achievable segmentation accuracy. (d) Executing time per image.

is hence suitable for preprocessing some time-critical applica-
tions. The overall performance of LSC ranks the second in our
experiments. LSC achieves very competitive BR and ASA val-
ues, while its execution is fast. As for the DBSCAN algorithm,
the most prominent character lies in the execution efficiency.
The algorithm requires only 0.03 seconds for processing
an image (which is the fastest among all the compared
algorithms), and it is hence suitable for real-time superpixel
applications. QS performs better than a few algorithms, but
it requires more than 2 seconds for handling an image and
generates irregular results. LRW performs well in considering
the UE and ASA, while its computational cost is high. Using
morphological operation, TP produces very regular super-
pixels. However, the algorithm endures long execution time
and poor boundary adherence. Lattice obtains promising BR
values, but its performance on UE and ASA is unsatisfactory.
Although the theoretical complexity Lattice is O(N1.5 log N),
our experiments shows that the algorithm is faster than many
O(N) algorithms in practical execution. ERS and SEEDS
rank the third and the forth in the experiments. SEEDS is
the second fastest among the compared algorithms, whereas
ERS is much slower. A drawback of the two algorithms is that
they both produce extremely irregular superpixels. Besides,
EOpt0 and EOpt1 achieves similar BR performance, but the
UE and ASA of EOpt0 are much better than those of EOpt1.
Both algorithms suffer from long computational overhead.

2) Results on PASCAL-S: Further, the results of different
algorithms on the PASCAL-S dataset are shown in Fig. 9.
It can be observed that, on this dataset, DES also performs the

1400 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Fig. 9. Performance comparison curves of different superpixel algo-
rithms on the PASCAL-S. (a) Undersegmentation error. (b) Boundary recall.
(c) Achievable segmentation accuracy. (d) Executing time per image.

best in terms of UE, BR, and ASA. Another three algorithms,
namely, SEEDS, ERS, and LSC, can be assigned to the
secondary best category. For the UE metric, the results of
SEEDS and ERS are better than those of LSC, whereas LSC
outperforms on the BR metric. Considering the execution time,
we can use a threshold, 0.5 seconds, to separate the algorithms
into two classes. The first class consists of DBSCAN, SEEDS,
SLIC, DES, Lattice, and LSC, which are efficient. In com-
parison, ERS, QS, EOPT0, TP, EOPT1, and LRW belong to
the second class that requires much more execution time.

To summarize, the proposed DES outperforms most state-
of-the-art methods, which is an effective, efficient, and reliable
algorithm for superpixel segmention. In addition to Fig. 1 and
Fig. 3, Fig. 10 shows more visual results, where DES is
compared with SLIC, LSC, QS, LRW, SEEDS, and ERS (the
six mostly competitive algorithms in the above quantitative
comparison). In this qualitative comparison, DES also exhibits
promising performance. Besides, we show a failure case of
DES in Fig. 11, where the “parachuter” is not success-
fully detected when generating small numbers of superpixels
(K = 100 and 200). The proposed algorithm generate reg-
ular and similarly-sized superpixels and thus it encounters a
difficulty in detecting the object which is much smaller than
the average superpixel size. Nevertheless, the problem can
be resolved when increasing K to 300, as can be observed
in Fig. 11.

C. Parameter Investigation

The distance measure in the feature space contains two
coefficients (ws and wg) to determine the relative importance
of spatial and contour features to the color feature (note
that the coefficient of color feature is fixed as 1). In the
above experiments, DES is tested with ws = 0.005 and
wg = 0.3. For ws, if we increase the value to 0.025,
as shown in Fig. 12, the performance of DES decreases to a
considerable extent (particularly in considering the BR values).
This is because the pixels in local regions commonly share
similar color properties, so they would be very sensitive to

Fig. 10. Visual superpixel results. From left to right: input image, ground-
truth segmentation, and results based on SLIC, LSC, QS, LRW, SEEDS, ERS,
and the proposed DES.

Fig. 11. A failure case of DES. The “parachuter” is not successfully detected
when K = 100 and 200.

Fig. 12. Investigation of parameters [ws, wg]. (a) Undersegmentation error.
(b) Boundary recall. (c) Achievable segmentation accuracy.

the differences of spatial coordinates. When increasing ws,
the influence of color feature in the distance measure decreases
significantly, resulting in the unsatisfactory segmentation per-
formance. On the contrary, if we decrease ws to 0.001,
the performance of DES is slightly improved. However, at the
same time, the resulting superpixels will become less regular.
For wg, as shown in Fig. 12, if the contour feature is given a
very small weight (e.g., 0.005 which is equal to ws), the effect
of this feature can hardly be expressed. The performance of
DES decreases to some extent. On the other side, if we set wg

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1401

Fig. 13. Achievable segmentation results. From left to right: input image, ground-truth segmentation, and results based on SLIC, LSC, QS, LRW, SEEDS,
ERS, and the proposed DES.

to a large value (e.g., wg = 1 as the weight of color feature),
the superpixels generated by DES can achieve slightly better
BR, because the contour feature favors the boundary detection.
However, the performance on the UE and ASA decreases and
the generated superpixels become less regular.

D. Preprocessing Performance for Image Segmentation

The superpixel segmentation technique is commonly used
as a preprocessing procedure in image segmentation and the
related fields. Because of this, it is desired that, by using

superpixel segmentation, the subsequent algorithm obtains not
only substantial speedup but also promising segmentation
performance. This can be investigated by assuming that an
ideal classifier is performed after the superpixel segmen-
tation. The ideal classifier is able to assign each super-
pixel with the most “proper” class, namely, the label of the
ground-truth segment within which the superpixel overlaps
the most. The method is similar to evaluating the ASA, but
now we can visualize the results, namely, the achievable
segmentations.

1402 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

TABLE III

PREPROCESSING PERFORMANCE FOR AN IDEAL IMAGE SEGMENTATION ALGORITHM ON THE BSDS 500

Fig. 14. Performance comparison curves of DESp and DES on the BSDS 500.
(a) Undersegmentation error. (b) Boundary recall. (c) Achievable segmentation
accuracy. (d) Executing time per image.

In terms of the ASA, according to the numerical comparison
in Subsection B, the generally best performed superpixel
algorithms are DES, LSC, ERS, SEEDS, LRW, QS, and
SLIC. Fig. 13 further visualizes the results by a few image
examples. It can be observed that the visual results of DES
and LSC are better than the others, which are very simi-
lar to the human-labelled ground truth. The proposed DES
algorithm slightly outperforms LSC (e.g., boat in the second
image, headdress and chin in the third image). In addition,
we use three image segmentation measures, namely the Dice,
Jaccard, and Conformity coefficients [60], to compare all
algorithms in a quantitative way. The results are presented
in Table III. The conclusions are consistent with those of our
qualitative comparisons: DES and LSC outperforms the other
algorithms (while DES slightly outperforms LSC). The two
algorithms exhibit better preprocessing performance than the
others and they are hence more suitable to be applied to image
segmentation.

E. More Comparisons on the Performance

Further, we conduct experimental comparisons between
DES and DESp to see the differences of performance brought
by our new algorithm design. Both algorithms are tested on the
BSDS 500 dataset and evaluated by the standard performance
metrics: UE, BR, ASA. The quantitative and quantitative
results are reported in Figs. 14 and 15, respectively. As shown
in Fig. 14(a)-(c), the results of DES are generally better than
those of DESp. Particularly, the undersegmentation rate is
significantly reduced. These results verify the effectiveness
of the improvements made on the algorithm design, namely,
introducing the kernel points and the contour feature. From
Fig. 14(d), it can be observed that DES requires longer
execution time than DESp. This is because of the additional
computational cost derived from computing the kernel points
and the contour feature. However, the increase in the required
processing time of DES is insignificant. The visual results

Fig. 15. Visual superpixel results of DESp (top) and DES (bottom).

Fig. 16. Achievable segmentation results of DESp (top) and DES (bottom).

in Fig. 15 show that both algorithms generate relatively
regular superpixels, while the DES achieves better boundary
adherence.

In addition, we also compare the preprocessing performance
of DESp and DES in Fig. 16. The experimental settings are
identical with those in Section IV-C. As expected, DES also
outperforms DESp in the preprocessing performance.

V. CONCLUSION

We develop a novel superpixel segmentation algorithm,
DES, which is able to yield accurate superpixel results effi-
ciently. The promising performance of DES owes much to the
comprehensive objective function that considers several global
properties in the segmentation. To the best of our knowledge,
this work is the first trial to optimize the boundary adherence
in a straightforward way by embedding a boundary gradient
term in the objective. In this way, the generated superpixels
are atomic regions that are unlikely to span multiple objects
in the image. A regularizer is also considered in the objective,
so as to enforce generating superpixels with similar sizes.
These two terms, together with the within-superpixel error, are
then aggregated into a single objective function to optimize.
For solving such a complex model, we use a DE algorithm
inspired by the natural evolution process. The algorithm is
efficient for solving the global optimization problems while
posing no restrictions on the form of objective functions. The
computational complexity of DES is O(N).

GONG AND ZHOU: DIFFERENTIAL EVOLUTIONARY SUPERPIXEL SEGMENTATION 1403

Qualitative and quantitative experimental results show that
the proposed algorithm outperforms state-of-the-art superpixel
algorithms in terms of undersegmentation error, boundary
recall, and achievable segmentation accuracy. Further experi-
ments on image achievable segmentation verify the promising
preprocessing performance of the algorithm. In the future,
we will further investigate the algorithm in noisy and cluttered
environments. Besides, owing to the excellent performance
of DES, it is appealing to apply the proposed algorithm to
preprocessing many computer vision tasks.

REFERENCES

[1] W. Zhu, S. Liang, Y. Wei, and J. Sun, “Saliency optimization from
robust background detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2014, pp. 2814–2821.

[2] H. Li, H. Lu, Z. Lin, X. Shen, and B. Price, “Inner and inter label
propagation: Salient object detection in the wild,” IEEE Trans. Image
Process., vol. 24, no. 10, pp. 3176–3186, Oct. 2015.

[3] H. Lu, X. Zhang, J. Qi, N. Tong, X. Ruan, and M.-H. Yang,
“Co-bootstrapping saliency,” IEEE Trans. Image Process., vol. 26, no. 1,
pp. 414–425, Jan. 2017.

[4] J. Shen, Y. Du, and X. Li, “Interactive segmentation using constrained
Laplacian optimization,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 7, pp. 1088–1100, Jul. 2014.

[5] X. Dong, J. Shen, L. Shao, and M.-H. Yang, “Interactive cosegmenta-
tion using global and local energy optimization,” IEEE Trans. Image
Process., vol. 24, no. 11, pp. 3966–3977, Nov. 2015.

[6] X. Dong, J. Shen, L. Shao, and L. Van Gool, “Sub-Markov random walk
for image segmentation,” IEEE Trans. Image Process., vol. 25, no. 2,
pp. 516–527, Feb. 2016.

[7] L. Zhang, Y. Gao, Y. Xia, K. Lu, J. Shen, and R. Ji, “Representative
discovery of structure cues for weakly-supervised image segmentation,”
IEEE Trans. Multimedia, vol. 16, no. 2, pp. 470–479, Feb. 2014.

[8] M. Jian and C. Jung, “Interactive image segmentation using adaptive
constraint propagation,” IEEE Trans. Image Process., vol. 25, no. 3,
pp. 1301–1311, Mar. 2016.

[9] A. Farag, L. Lu, H. R. Roth, J. Liu, E. Turkbey, and R. M. Summers,
“A bottom-up approach for pancreas segmentation using cascaded super-
pixels and (deep) image patch labeling,” IEEE Trans. Image Process.,
vol. 26, no. 1, pp. 386–399, Jan. 2017.

[10] J. Shen, J. Peng, X. Dong, L. Shao, and F. Porikli, “Higher order energies
for image segmentation,” IEEE Trans. Image Process., vol. 26, no. 10,
pp. 4911–4922, Oct. 2017.

[11] W. Wang, J. Shen, X. Li, and F. Porikli, “Robust video object coseg-
mentation,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3137–3148,
Oct. 2015.

[12] X. Dong, J. Shen, and L. Shao, “HSP2P: Hierarchical
superpixel-to-pixel dense image matching,” IEEE Trans. Circuits
Syst. Video Technol., to be published. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/7523995/

[13] Y. Wang and Q. Zhao, “Superpixel tracking via graph-based semi-
supervised SVM and supervised saliency detection,” in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Jun./Jul. 2015, pp. 1–6.

[14] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah, “Visual tracking: An experimental survey,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468,
Jul. 2014.

[15] J. Tighe and S. Lazebnik, “SuperParsing: Scalable nonparametric image
parsing with superpixels,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2010, pp. 352–365.

[16] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, “Retrieving
similar styles to parse clothing,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 5, pp. 1028–1040, May 2015.

[17] X. Ren and J. Malik, “Learning a classification model for segmen-
tation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2003,
pp. 10–17.

[18] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[19] Z. Li and J. Chen, “Superpixel segmentation using linear spectral
clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1356–1363.

[20] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-
time superpixel segmentation by DBSCAN clustering algorithm,” IEEE
Trans. Image Process., vol. 25, no. 12, pp. 5933–5942, Dec. 2016.

[21] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode
seeking,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2008, pp. 705–718.

[22] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for
superpixel segmentation,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1451–1462, Apr. 2014.

[23] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson,
and K. Siddiqi, “TurboPixels: Fast superpixels using geometric flows,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297,
Dec. 2009.

[24] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and G. Jones,
“Superpixel lattices,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2008, pp. 1–8.

[25] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool,
“SEEDS: Superpixels extracted via energy-driven sampling,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2012, pp. 13–26.

[26] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate
superpixel segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2011, pp. 2097–2104.

[27] O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels
in an energy optimization framework,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2010, pp. 211–224.

[28] Y.-J. Gong, Y. Zhou, and X. Zhang, “A superpixel segmentation
algorithm based on differential evolution,” in Proc. IEEE Int. Conf.
Multimedia Expo (ICME), Jul. 2016, pp. 1–6.

[29] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[30] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differ-
ential evolution—An updated survey,” Swarm Evol. Comput., vol. 27,
pp. 1–30, Apr. 2016.

[31] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolu-
tion: A Practical Approach to Global Optimization. Berlin, Germany:
Springer-Verlag, 2006.

[32] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[33] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of
salient object segmentation,” in Proc. CVPR, 2014, pp. 280–287.

[34] J. Chen, Z. Li, and B. Huang, “Linear spectral clustering superpixel,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3317–3330, Jul. 2017.

[35] R. Achanta and S. Süsstrunk, “Superpixels and polygons using simple
non-iterative clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), Jul. 2017, pp. 4895–4904.

[36] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[37] Y. Liang, J. Shen, X. Dong, H. Sun, and X. Li, “Video supervoxels using
partially absorbing random walks,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 5, pp. 928–938, May 2016.

[38] F. Meyer, “Color image segmentation,” in Proc. Int. Conf. Image
Process. Appl. (ICIP), 1992, pp. 303–306.

[39] V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes, T. Walter,
and E. Decencière, “Waterpixels,” IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3707–3716, Nov. 2015.

[40] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[41] X. He, R. S. Zemel, and D. Ray, “Learning and incorporating top-down
cues in image segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2006, pp. 338–351.

[42] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181,
Sep. 2004.

[43] Y. Zhou, L. Ju, and S. Wang, “Multiscale superpixels and supervoxels
based on hierarchical edge-weighted centroidal Voronoi tessellation,”
IEEE Trans. Image Process., vol. 24, no. 11, pp. 3834–3845, Nov. 2015.

[44] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “SEEDS:
Superpixels extracted via energy-driven sampling,” Int. J. Comput. Vis.,
vol. 111, no. 3, pp. 298–314, 2015.

[45] J. Peng, J. Shen, A. Yao, and X. Li, “Superpixel optimization using
higher order energy,” IEEE Trans. Circuits Syst. Video Technol., vol. 26,
no. 5, pp. 917–927, May 2016.

1404 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

[46] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[47] Y. L. Li, Z. H. Zhan, Y. J. Gong, W. N. Chen, J. Zhang, and Y. Li,
“Differential evolution with an evolution path: A DEEP evolutionary
algorithm,” IEEE Trans. Cybern., vol. 45, no. 9, pp. 1798–1810,
Sep. 2015.

[48] X. Qiu, J.-X. Xu, K. C. Tan, and H. A. Abbass, “Adaptive cross-
generation differential evolution operators for multiobjective optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 232–244,
Apr. 2016.

[49] N. M. Hamza, D. L. Essam, and R. A. Sarker, “Constraint consen-
sus mutation-based differential evolution for constrained optimization,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 447–459, Jun. 2016.

[50] M. F. Zaman, S. M. Elsayed, T. Ray, and R. A. Sarker, “Evolutionary
algorithms for dynamic economic dispatch problems,” IEEE Trans.
Power Syst., vol. 31, no. 2, pp. 1486–1495, Mar. 2016.

[51] D. Qiao and G. K. H. Pang, “A modified differential evolution with
heuristic algorithm for nonconvex optimization on sensor network
localization,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1676–1689,
Mar. 2016.

[52] Z. Gao, Z. Pan, and J. Gao, “Multimutation differential evolution
algorithm and its application to seismic inversion,” IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 6, pp. 3626–3636, Jun. 2016.

[53] S. Sarkar and S. Das, “Multilevel image thresholding based on 2D
histogram and maximum Tsallis entropy—A differential evolution
approach,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 4788–4797,
Dec. 2013.

[54] A. Khan, M. A. Jaffar, and L. Shao, “A modified adaptive differential
evolution algorithm for color image segmentation,” Knowl. Inf. Syst.,
vol. 43, no. 3, pp. 583–597, 2015.

[55] U. Maulik and I. Saha, “Automatic fuzzy clustering using modified
differential evolution for image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 48, no. 9, pp. 3503–3510, Sep. 2010.

[56] N. Armanfard, J. P. Reilly, and M. Komeili, “Local feature selection for
data classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 6, pp. 1217–1227, Jun. 2016.

[57] M. Du, X. Nan, and L. Guan, “Monocular human motion tracking
by using DE-MC particle filter,” IEEE Trans. Image Process., vol. 22,
no. 10, pp. 3852–3865, Oct. 2013.

[58] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On stability and
convergence of the population-dynamics in differential evolution,” AI
Commun., vol. 22, no. 1, pp. 1–30, 2009.

[59] P. Neubert and P. Protzel, “Superpixel benchmark and comparison,” in
Forum Bildverarbeitung. Karlsruhe, Germany: KIT Scientific Publish-
ing, 2012, pp. 1–12.

[60] H.-H. Chang, A. H. Zhuang, D. J. Valentino, and W.-C. Chu, “Perfor-
mance measure characterization for evaluating neuroimage segmentation
algorithms,” NeuroImage, vol. 47, no. 1, pp. 122–135, 2009.

Yue-Jiao Gong (M’15) received the B.S. and Ph.D.
degrees in computer science from Sun Yat-Sen Uni-
versity, China, in 2010 and 2014, respectively. From
2015 to 2016, she was a Post-Doctoral Research
Fellow with the Department of Computer and Infor-
mation Science, University of Macau, Macau. She
is currently an Associate Professor with the School
of Computer Science and Engineering, South China
University of Technology, China. Her research inter-
ests include evolutionary computation and machine
learning methods, and also their applications to

image processing. She has authored over 50 papers in her research area.
She currently serves as a Reviewer for the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON NEURAL

NETWORK AND LEARNING SYSTEMS, and the IEEE TRANSACTIONS ON
IMAGE PROCESSING.

Yicong Zhou (M’07–SM’14) received the B.S.
degree in electrical engineering from Hunan Uni-
versity, Changsha, China, and the M.S. and Ph.D.
degrees in electrical engineering from Tufts Uni-
versity, MA, USA. He is currently an Associate
Professor and the Director of the Vision and Image
Processing Laboratory, Department of Computer and
Information Science, University of Macau, Macau,
China. His research interests include chaotic sys-
tems, multimedia security, image processing and
understanding, and machine learning.

He was a recipient of the Third Price of Macau Natural Science Award
in 2014. He is the Co-Chair of Technical Committee on Cognitive Computing
in the IEEE Systems, Man, and Cybernetics Society. He served as an Associate
Editor for the Neurocomputing, the Journal of Visual Communication and
Image Representation, and the Signal Processing: Image Communication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

